Building a Carbon Farming Monitoring Network (CFMN) at Texas A&M

Texas A&M Research Development Fund (RDF) Proposal
October 4, 2021

Principal Investigator
Dr. Nithya Rajan
Department of Soil and Crop Sciences
nrajan@ag.tamu.edu; 979-845-0360

Total Funding Request: $1,066,226

Participating TAMU Colleges
College of Agriculture and Life Sciences (COALS)
College of Engineering (COE)

Co-Investigators
Dr. Jason West, Department of Ecology and Conservation Biology
Dr. Salvatore Calabrese, Department of Agricultural and Biological Engineering
Dr. Sanjay Antony-Babu, Department of Plant Pathology and Microbiology
Dr. Faruque Hasan, Department of Chemical Engineering

Collaborators
Dr. Kenneth D. Casey, AgriLife Research Center-Amarillo
Mr. Stephen Labar, Farm Manager, Texas A&M AgriLife Research Farm

Executive Summary
Carbon farming is gaining significant momentum in the U.S. and other countries as a major strategy for achieving carbon neutrality or “net zero” emissions. The current U.S. Federal Government is keen to establish a “carbon bank”, however, we lack a mechanism to document the actual emission reductions from agricultural fields implementing carbon farming practices. The dynamic processes of carbon and greenhouse gas emissions occur at finer temporal resolutions and vary spatially in highly heterogenous agricultural landscapes. It is important to account this temporal and spatial detail for all major greenhouse gas fluxes (carbon dioxide, nitrous oxide, and methane) to properly estimate carbon offsets. The overarching goal of this Carbon Farming Monitoring Network (CFMN) project is to establish the necessary infrastructure to support testing and validation of emerging carbon farming technologies. CFMN is a collaborative effort involving a multi-disciplinary team of scientists from the College of Agriculture and Life Sciences (COALS) and College of Engineering (COE) with the expectation to grow our partnership with other Texas A&M colleges, research centers, universities, and USDA-ARS. The primary goals are the following: (1) Install and operate CFMN for monitoring long-term continuous in-field real-time greenhouse gas fluxes from large-production scale fields, (2) Generate a CFMN database that integrates in-field real-time greenhouse gas fluxes with a suite of management, weather, soil, plant, and remote sensing data, (3) Develop a CFMN data access and visualization portal for archiving, managing, and sharing data, and (4) Share CFMN knowledge on carbon farming practices with broader audiences including scientists, farmers, industries, policy makers and other stakeholders. The proposed CFMN will be a unique research facility at Texas A&M. The establishment of CFMN is timely and fits well with the overarching goal of several recent federal programs on developing approaches that promote transformational changes within the next 25 years to achieve net negative emissions.